
1 Introduction

SEMS is a new protocol for encrypting and signing short messages in such a way that the
resulting output is optimized for transmission using the GSM Short Message Service. SEMS is a
free protocol: everyone can implement it, and no components used for SEMS are patented,
licensed or otherwise encumbered.

This document describes everything needed to understand and implement SEMS.

2 The SEMS protocol

2.1 About SEMS operations
All SEMS users generate a public/private key pair. There are currently two types of keys: a 1112
we sometimes call a “medium security key”, or a 2208 bit RSA key which we refer to as a “high
security key”. Messages encrypted or signed using the first key size precisely fit one SMS
message, messages encrypted or signed with the second key size fit 2 SMS messages.

There exist three basic types of message objects to be sent using SEMS. They are

• text messages
• keys and
• key revocations

Objects sent via SEMS can be encrypted or sent in the clear. The objects can also be signed, or
they can travel unsigned.

2.1.1 Signatures

A signature can be added in two ways. If the object is short enough, an included signature can be
used. This means the object and the signature can travel the same SMS (or the same two SMSs in
the case of a high security signature). Included signatures save on the number of SMSs sent, but
are only possible under the following circumstances:

• The message must fit inside one transport object for the desired signature size
• The recipient must be able to tell who the sender is
• The sender must be certain that the recipient has her key

If one or both of the last two conditions are not met, the message is sent, but gets lost because the
recipient SEMS client has no idea what to do with it. This can happen for instance because the
SMS message is relayed in some way that loses the phone number of the sender, or because the
recipient doesn’t have the sender’s key

To determine the message length for which an included signature is still possible, take the
maximum payload size for the transport object that fits the signature type (989 bits for medium
security, 2084 bits for high security). From this number, deduct 192 bits for header and signature
information, leaving 797 or 1892 bits respectively for symbol size field (2 bits) and message.

2.2 Unencrypted

2.2.1 Without signature

To send unencrypted, the text message (5.2) or key (5.3) is wrapped in multiple multipart
containers (5.6) if it is larger than the maximum payload size for an unencrypted transport object
(4.1), which is 1069 bits. These containers are then packed in these unencrypted transport objects
and sent.

2.2.2 With medium security included signature

• Form a message object with included signature. Set the signature type field to included,
and insert a timestamp and the appropriate SHA-1 hash output in the signature
information field.

• Insert this object in a medium security envelope, including the same 80 random bits that
were also used in the SHA-1 hash of the previous step

• Perform a Shake and a secret key operation with the secret key of the sender on the
envelope

• Insert the result in a medium security transport object (4.2.1), setting the content
description to 10 to indicate that this is an unencrypted message with an included
signature.

• Send the transport object to the recipient

2.2.3 With high security included signature

Unencrypted with a high security included signature is done in almost the same way as
unencrypted with a medium security included signature. But in step 2 the message object is put
inside a high security crypto envelope (4.3.2) and this envelope is encrypted and then inserted in
the two high security transport objects: (4.3.1.1 & 4.3.1.2).

2.2.4 With detached signature

• To send any object with a detached signature, the signature is built first. For this, we form
a detached signature object (5.5). If the object to be signed is a text message, the SHA-1
in the signature object is made over “symbol size || message content || timestamp || 80
random bits”, if the object is a key, the SHA-1 is done over “fingerprint || timestamp || 80
random bits”.

• This object is inserted in a crypto envelope of the right size for the signing key (4.2.2 for

medium security, (4.3.2 for high security). The 80 bits of random in the envelope are the
same as what was used in the SHA-1 in the previous step

• A Shake and an RSA secret key operation with the key of the sender are performed on

the envelope. See paragraph 3.2.2 for details on the secret key operation.

• The first 20 bits of the fingerprint of the signing key, and the first 20 bits of the resulting
envelope of the previous step make up a signature description.

• Then the actual message (either text message or key) is composed, using the 40-bit

signature description in the appropriate field in the header to denote that a signature is to
be expected for this message. Otherwise the message travels as it would if it were
unsigned, that is: no special operations are performed in composing the message.

2.3 Medium security encrypted messages

2.3.1 Without signature

• Form a message object

• Insert this object in a medium security envelope

• Perform a public key operation with the public key of the recipient on the envelope

• Insert the result in a medium security transport object (4.2.1)

• Send the transport object to the recipient

2.3.2 With medium security included signature

• Form a message object with included signature. Set the signature type field to included,
and insert a timestamp and the appropriate SHA-1 hash output in the signature
information field.

• Insert this object in a medium security envelope, including the same 80 random bits that
were also used in the SHA-1 hash of the previous step

• Perform a secret key operation with the secret key of the sender on the envelope

• Reset the most significant bit of the envelope

• Perform a public key operation with the public key of the recipient on the envelope

• Insert the result in a medium security transport object (4.2.1)

• Send the transport object to the recipient

2.3.3 With high security included signature

A high security envelope would need to be packed to travel through a medium security encrypted
channel. Although this would be possible using an encapsulation packet inside multipart
containers, it would take 3 SMS messages. Since detached signatures are superior to included
signatures, and doing this with a detached signature would also take 3 SMS messages, we use
that method instead.

2.3.4 With detached signature

• To send any object with a detached signature, the signature is built first. For this, we form
a detached signature object (5.5). If the object to be signed is a text message, the SHA-1
in the signature object is made over “symbol size || message content || timestamp || 80
random bits”, if the object is a key, the SHA-1 is done over “fingerprint || timestamp || 80
random bits”.

• This object is inserted in a crypto envelope of the right size for the signing key (4.2.2 for

medium security, (4.3.2 for high security). The 80 bits of random in the envelope are the
same as what was used in the SHA-1 in the previous step

• The key and IV for symmetric crypto are determined using the method described in 3.3.1

• An RSA secret key operation with the key of the sender is performed on the envelope.

See paragraph 3.2.2 for details on the secret key operation.

• A symmetric crypto operation (3.3) is performed on the envelope.

• The first 20 bits of the fingerprint of the signing key, and the first 20 bits of the resulting
envelope of the previous step make up a signature description.

Then the actual message (either text message or key) is composed, using the 40 bit signature
description in the appropriate field in the header to denote that a signature is to be expected for
this message. Otherwise the message travels as it would if it were unsigned, that is: no special
operations are performed in composing the message.

2.4 High security encrypted messages

2.4.1 Without signature

• Form a message object

• Insert this object in a high security envelope (4.3.2)

• Perform a public key operation with the public key of the recipient on the envelope

• Insert the result in high security transport objects (4.3.1.1 and 4.3.1.2)

• Send the transport object to the recipient

2.4.2 With medium security included signature

• Form a message object with included signature. Set the signature type field to included,
and insert a timestamp and the appropriate SHA-1 hash output in the signature
information field.

• Insert this object in a medium security envelope, including the same 80 random bits that
were also used in the SHA-1 hash of the previous step

• Perform a secret key operation with the secret key of the sender on the envelope

• Encapsulate the result in an encapsulation object (5.7)

• Pack the encapsulation object in a high security crypto envelope (4.3.2)

• Perform a public key operation with the public key of the recipient on the envelope

• Insert the result in the two high security transport objects (4.3.1.1 and 4.3.1.2)

• Send the transport object to the recipient

2.4.3 With high security included signature

• Form a message object with included signature. Set the signature type field to included,
and insert a timestamp and the appropriate SHA-1 hash output in the signature
information field.

• Insert this object in a medium security envelope, including the same 80 random bits that
were also used in the SHA-1 hash of the previous step

• Perform a secret key operation with the secret key of the sender on the envelope

• Reset the most significant bit of the envelope

• Perform a public key operation with the public key of the recipient on the envelope

• Insert the result in two high security transport objects (4.3.1.1 & 4.3.1.2)

• Send the transport object to the recipient

2.4.4 With detached signature

Same as 2.3.4

2.5 Allowed operations
Not every payload data type can be used with each mode of operation. For instance, a key
revocation cannot be sent without a signature of the key to be revoked. This means an
unencrypted packet or unsigned encrypted packet with a key revocation is not to be sent, and has
to be rejected when received.
Table 1 shows all the modes of operation, and the transport object (1.x) and data objects (5.x)
that can be used for this mode.
Table 1

 No
signature

Medium
security
signature
included

High
security
signature
included

Content
claiming
detached
signature

Medium
security
detached
signature

High
security
detached
signature

Unencrypted 4.1
5.2, 5.3,
5.6

4.2
5.2, 5.3,
5.4 e

4.3
5.2, 5.3,
5.4

4.1
5.2, 5.3,
5.4, 5.6

4.2
5.5

4.3
5.5

Encrypted to
Medium
Security key

4.2
5.1, 5.2,
5.3, 5.6

4.2
5.2, 5.3,
5.4 ae

Use
detached
signature b

4.2
5.2, 5.3,
5.4, 5.6

4.2
5.5 d

4.3
5.5 d

Encrypted to
High Security
key

4.3
5.1, 5.2,
5.3, 5.6

4.3
5.2, 5.3 or
5.4 inside
5.7 ce

4.3
5.2, 5.3,
5.4 a

4.3
5.2, 5.3,
5.4, 5.6

4.2
5.5 d

4.3
5.5 d

Encryption

Signature

a) Two RSA operations are performed, first with the secret key of the sender, then with the
public key of the recipient. The MSB of the output is reset to zero after the first operation.

b) This operation would involve packing a long signature in three short packets using
encapsulation. Since detached signatures are superior and this operation would also take three
SMSs using a detached signature, we use that instead.

c) An encapsulation packet (5.7) is used to transmit the shorter signature output over 2 SMS
messages.

d) Signature is not encrypted with public key, but with the AES symmetric algorithm. The key
and IV are determined from the (first packet of the) message.

e) Although 5.3 (key) is listed, the current key format never fits inside one medium security
included signature packet. This may change with a new key format, and thus 5.3 is listed
here.

2.6 Examples

2.6.1 An unencrypted text message with a medium security included
signature

A medium security included signature on a unencrypted text message would made thus:

• Form text message object (5.2) as follows:

field content comment

payload data type 0001 Text message

signature type 10 included

SHA-1 over “symbol size || message
content || timestamp || 80 random bits”

signature info

26-bit timestamp

symbol size 10 7 bit symbols

message “Hello World” in 7 bit characters

• Form a medium security crypto envelope (4.2.2) as follows:

field content comment

set to zero 0

length 10 bits, length of object made
above

payload object made above pad with zeroes until 989 bits

random 80 bits Use the same bits that were used
for the signature info hash above.

• Perform the necessary operations on the crypto envelope. In this particular case, a Shake
operation and a private key operation with the secret key of the sender are performed.

• Form a medium security transport object (4.2.1) as follows:

field content comment

SEMS version 000 SEMS v1

packet size 0 1 SMS

content desc. 10 unencrypted with medium security included
signature

reserved 00

crypto envelope crypto envelope The resulting crypto envelope formed in the
previous step.

• Send the transport object to the recipient

3 Basic functions

These basic mathematical functions form the building blocks upon which the rest of the SEMS
protocol is built. With the exception of key generation, the basic functions of SEMS are
performed on chunks of data called ‘crypto envelopes’. A crypto envelope contains some header
information, a SEMS data object and 80 bits of random padding. Crypto envelopes come in two
sizes: either 1112 bits (see 4.2.2) or 2208 bits (see 4.3.2). After performing the necessary basic
functions on the crypto envelope, the envelope is packed in either one or two transport objects
and sent.

3.1 Shake
Shake (which stands for Some Hashes Against Known Excrements) is a fully invertible function
that involves lots of SHA-1 hashes and serves no other purpose than to fully randomize the input
bits to the RSA function in a mathematically complex way. Shake makes sure that a one bit
change in the input affects all output bits. This is necessary to foil some otherwise dangerous
attacks against systems using RSA with a relatively large message and a small public exponent.

Shake is performed on all but the first bit of the crypto envelope. This bit is not passed to Shake
and has to remain zero in order to make sure that the resulting number can never be too large for
the RSA function to handle.

3.1.1 Shake pseudocode

To perform Shake, the input is split into 160-bit chunks, leaving a smaller chunk at the end. The
chunks are numbered M0 through Mr, where r is one less than the total number of chunks, and
Mr is likely to be smaller than 160 bits.

M0’ = M0 xor SHA-1(0x00 || M1 || … || Mr)

FOR j = 1 TO r

 Mj’ = Mj xor SHA-1([j mod 256] || M0’)

NEXT

M0’’ = M0’ xor SHA-1([r+1 mod 256] || M1’ || M2’ || M3’[bits 0
through 111])

Result_of_Shake = M0’’ || M1’ || … || Mr’

Notes: || is used to denote concatenation of the bit strings. The 0x00 in the first line, the j that is
input to the SHA-1 inside the FOR-NEXT loop and the r+1 that is input in the last SHA-1 are all
8-bit values. When the loop comes to r, Mr’ is taken to mean only the first part of the SHA-1
output, up to the length of Mr.

3.1.2 Inverting Shake

When Shake needs to be undone, the input of the inverting function is the result of a Shake
operation, i.e.: M0’’ || M1’ || … || Mr’. To undo this, perform:

M0’= M0’’ xor SHA-1([r+1 mod 256] || M1’ || M2’ || M3’[bits 0
through 111])

FOR j = 1 TO r

 Mj = Mj' xor SHA-1([j mod 256] || M0’)

NEXT

M0 = M0’ xor SHA-1(0x00 || M1 || … || Mr)

Output_of_inversion = M0 || … || Mr

3.1.3 Shake scientific background

The idea of Shake is the randomization of the input of the RSA function. After Shake every bit
depends on every other bit in a complex way. We use a SHA-1 based pseudo random function
(SHA-1(j || .) with a byte counter j). Shake is only a slight modification away from the BEAST
algorithm constructed by Stefan Lucks in 1998 1.
To make sure we have a strong theoretical basis we use an unbalanced Feistel construction resp.
unbalanced Luby/Rackoff Ciphers 2. This construction element is widely used and there are a lot
of mathematical security proves that show a close relation between the security of the
roundfunction and the whole output. Since we use the well-trusted SHA-1 hashfunction we have
a huge margin of security.
Compared to simple mixing constructions we add a fast 3rd round. This is done because the
shortcut theorem by Stefan Lucks 3 showed that a 160-bit input in the 3rd round is sufficient for
the security proves. We use 432 bits as input for the last SHA-1 because 512-(64-1)-8=439 is the
biggest possible input for which SHA-1 does its internal timeconsuming compression function
only once 4 5. We use 432 instead of 439 because it is byte aligned.

1 Lucks, S., ''BEAST: A fast block cipher for arbitrary blocksize'', IFIP'96, Conference on Communication and

Multimedia Security, Chapman & Hall, 1996, pp. 144--153.

2 Luby, M., Rackoff, C., ''How to construct pseudorandom permutations from pseudo random functions'',
SIAM J. Computing, Vol 17, No. 2, 1988, pp. 239--255.

3 Lucks, S., ''Faster Luby-Rackoff ciphers'', Fast Software Encryption, Springer LNCS 1039, 1996.

4 Weis, R., ''Cryptographic Protocols and Algorithms for Distributed Multimedia Systems'', PhD thesis, Shaker
Verlag, Aachen, Maastricht, 2000.

5 Weis, R., Lucks, S., ''Fast Multimedia Encryption in JAVA Using Unbalanced Luby/Rackoff Ciphers'', 4th
European Conference on Multimedia Applications, Services and Techniques, ECMAST'99, Springer LNCS
1629, Madrid, 26-28 MAY 1999.

3.2 Public/private key operations (RSA)
All RSA functions are performed treating the contents of the crypto envelope as an integer of
which the MSB is at the beginning of the envelope (and is always set to zero). The public key
operations of encrypting and signature verification differ at a higher level of the SEMS protocol,
but are exactly the same in terms of what is done to the number in the crypto envelope. The same
goes for the secret key operations of signing and decrypting.

3.2.1 Public key operations

The encryption envelope after a public key operation holds the output c of the function:

c = me mod n

where m is the original contents of the crypto envelope, n is the public modulus and e is the
public exponent, which is fixed to the number 3 in the case of SEMS type 1 keys. In the rest of
this document, any reference to “public key” only refers to this public modulus.

3.2.2 Secret key operations

Secret key operations are a little harder, because we use the Chinese reminder theorem to speed
up calculations. The crypto envelope after a secret key operation contains the output m of the last
function.

m1 = c d mod (p-1) mod p

m2 = c d mod (q-1) mod q

h = u * (m2 - m1) mod q

m = m1 + h * p mod n

where c is the original contents of the crypto envelope, n is the public modulus and d,p,q and u
are numbers we kept when we generated the key pair to allow for speeding up the secret key
calculation using the Chinese reminder theorem.

3.3 Symmetric packet encryption (AES)
Symmetric encryption is done by performing AES in CBF mode on the entire crypto envelope,
using a 256-bit key and a 128-bit initial vector. Currently we only use symmetric encryption
when we send an encrypted, detached signature packet. Further use of symmetric encryption is
foreseen in the upcoming remailer definition.

3.3.1 Obtaining AES key and IV for detached signature encryption

Currently symmetric encryption is only used for encryption of detached signatures, and the key
and IV are obtained from the first packet of the message that is signed. The sender takes the

contents of the crypto envelope of the message to be signed, after adding the random bits, but
before performing any operations such as Shake or RSA on the envelope.

K1 = SHA-1 (0x00 || envelope) (0x00 is 8 zero bits)
K2 = SHA-1 (0x0000 || envelope) (0x0000 is 16 zero bits)

X = K1 || K2{first 96 bits)

256 bit AES key = K1 || K1 XOR K2
Initial Vector = K2{last 128 bits }

3.4 Key generation

During key generation, two prime numbers are generated. The smaller of the two we name p, the
larger we call q. The length of these prime numbers is exactly half the desired keylength. The
two most significant bits must be set, as well as the lowest bit (prime numbers are odd by
nature). The other bits are filled with random and a test is done to see whether p-1 is divisible by
three. If not, a test is done to see if the number is prime. If the number is not prime, the random is
changed (adding 1 would suffice), and the tests are done again.

As soon as these two primes are found, the following math is performed:

n = p * q

phi = (p-1) * (q-1)

e = 3

d = Multiplicative inverse of e mod phi

u = Multiplicative inverse of p mod q

Multiplicative inverses are found using Euclid’s algorithm. n is the public modulus and is
published as the SEMS public key. d, p, q and u are kept locally as SEMS secret key
information.

4 Transport objects

4.1 Unencrypted

bits description comment

3 SEMS version 000 = SEMS v1

1 SEMS envelope size 0 = 1112 bits

1 SEMS content desc. 0 = Unencrypted

3 reserved Set to 000

11 Length of data in bits

1069 Payload, pad with zeroes

32 CRC-32 checksum

4.2 Medium security transport

4.2.1 Medium security packet format

bits description comment

3 SEMS version 000 = SEMS v1

1 SEMS envelope size 0 = 1112 bits

2 SEMS content desc. 10 = Unencrypted with medium security
 included signature
11 = Other medium security traffic

2 reserved Set to 00

1112 Medium security crypto
envelope (4.2.2)

4.2.2 Medium security crypto envelope

bits description comment

1 Set to zero Number has to always be smaller than n

10 Length of data in bits

989 Payload, pad with zeroes

80 Random padding

32 CRC-32

4.3 High security transport

4.3.1 High security packet format

4.3.1.1 High security packet #1

bits description comment

3 SEMS version 000 = SEMS v1

1 SEMS envelope size 1 = 2208 bits

8 Packet ID

1 Subpacket 0 = first packet

1 SEMS content desc. 0 = Unencrypted with high security incl. sig.
1 = Other high security traffic

2 reserved Set to 00

1104 First half of high security
crypto envelope (4.3.2)

4.3.1.2 High security packet #2

bits description comment

3 SEMS version 000 = SEMS v1

1 SEMS envelope size 1 = 2208 bits

8 Packet ID

1 Subpacket 1 = second packet

3 reserved Set to 000

1104 Second half of high security
crypto envelope (4.3.2)

4.3.2 High security crypto envelope

bits description comment

1 Set to zero Number has to always be smaller than n

11 Length of data in bits

2084 Payload, pad with zeroes

80 Random padding

32 CRC-32

5 Data objects

5.1 No Operation

bits description comment

4 Payload data type 0000 = No Operation

The receiving SEMS client shall ignore an incoming object of this type. No operation messages
can be used to create ‘cover traffic’, to help foil traffic analysis. No operation messages cannot
be signed, and they cannot be sent in the clear.

5.2 Text message

bits description comment

4 Payload data type 0001 = Text message

2 Signature type 00 = none
01 = detached
10 = included

0, 40 or 186 Signature information See text

2 Symbol size 00 = 5 bits (modified Baudot)
01 = 6 bits (ASCII 0x20-0x5F, caps only)
10 = 7 bits (ASCII)
11 = 8 bits (binary, not displayed)

Variable Message content

5.2.1 Included signature information

In the case of an included signature, a 160 bit SHA-1 hash of “symbol size || message content ||
timestamp || random”, followed by the 26-bit timestamp is inserted as signature information.

5.2.2 Detached signature information

In the case of a detached signature, a 40-bit signature identifier is included. The first 20 bits of
this identifier are the first 20 bits of the key fingerprint of the signing key. The second 20 bits are
the first 20 bits of the signature packet crypto envelope in its encrypted form. This information
enables the receiver to recognize this otherwise illegible block as the signature and to know who
signed it.

5.3 Key

bits description comment

4 Payload data type 0010 = Key

2 Signature type 00 = none
01 = detached
10 = included
11 = both

5 Number of detached signatures

Variable Signature info see text

1 Send me yours 1 = please send me your key

3 Key type 001 = RSA with public exponent 3

50 Telephone number In international format, as integer

16 Expiration date In days. 0 = never, 1 = August 1st, 2001

6 Length of Key Name field In 7 bit characters

Variable Key Name field ASCII

1112 or 2208 Public Key

If one user sends a key to another, the client could check whether there is a key stored for this
other user. If this is not the case, the sending user is offered the option of including a request for
the key of the recipient. If the user selects yes, the’Send me yours’ bit in the key header will be
set. If the recipient receives a key with this bit set, it offers the user the option of sending her key
in return.

5.3.1 Key fingerprint

A SEMS key fingerprint is the output of a SHA-1 hash whose input is a concatenation of all
fields starting at ‘Key type’.

5.3.2 Included key signature

Although the key data type supports an included signature, currently only medium security keys
signed by a high security key fit in one high security packet, and can thus have an included
signature. If there is an included signature, the signature information field starts with a 160-bit
SHA-1 hash over “fingerprint || timestamp || random”, followed by the 26-bit timestamp.

5.3.3 Detached key signatures

If there are detached signatures, the signature information then continues with 40 bits per
detached signature. These 40 bits describe the signature in the same way as with signatures on
text messages (see 5.2.2).

5.4 Key revocation

bits description comment

4 Payload data type 0011 = Key revocation

2 Signature type 01 = detached
10 = included

40 or
186

Signature info see text

160 Fingerprint of key that is
being revoked

The signature info holds 160 bits SHA-1 over “fingerprint || timestamp || random” followed by
the timestamp in case of an included signature, or a 40 bit signature identifier in the case of a
detached signature.
Key revocations have to be signed by the key to be revoked. If the signature is detached, the
usual 40-bit signature identifier is used to help the recipient find the signature. Unsigned key
revocations may not be sent, and are to be discarded without presentation to the user.

5.5 Detached signature

bits description Comment

4 Payload data type 0100 = Detached signature

160 SHA-1 hash of object

26 time stamp In minutes since jan 1st

The SHA-1 hash in the signature packet is calculated over "symbol size || message content ||
timestamp || random" or "key fingerprint || timestamp || random", where random is the 80 bits of
random padding of the signature packet.

5.6 Multipart container

bits Description Comment

4 Payload data type 0101 = Multipart container

5 ID

5 Number of this part

5 Total number of parts

Variable Data

Some text messages and keys to be sent are longer than the payload size for the packet used. In
this case the data type is packed inside multiple multipart containers. The ID is a 5-bit number to
distinguish this multipart transmission from other multipart transmissions between this sender

and recipient. The total number of parts cannot exceed 31. Multipart transmissions cannot have
included signatures.

5.7 Encapsulation packet

bits Description Comment

4 Payload data type 0110 = Encapsulation packet

variable Packet data

Used to send a 1112 or 2208-bit crypto envelope when the transport encapsulation has a different
block size. This packet is currently only used to encapsulate the output of a medium security
included signature operation to allow it to travel encrypted to a high security key.

6 Appendices

6.1 Appendix A: Modified Baudot

Hex Letters Figures

00 . *
01 E 3
02 , LF
03 A -
04 Space Space
05 S '
06 I 8
07 U 7
08 CR CR
09 D $
0A R 4
0B J \
0C N ,
0D F !
0E C :
0F K (
10 T 5
11 Z "
12 L)
13 W 2
14 H #
15 Y 6
16 P 0
17 Q 1
18 O 9
19 B ?
1ª G &
1B FIGS %
1C M .
1D X /
1E V ;
1F @ LTRS

7 Index

1 Introduction... 1
2 The SEMS protocol... 2

2.1 About SEMS operations ... 2
2.1.1 Signatures.. 2

2.2 Unencrypted.. 2
2.2.1 Without signature.. 2
2.2.2 With medium security included signature .. 3
2.2.3 With high security included signature .. 3
2.2.4 With detached signature.. 3

2.3 Medium security encrypted messages .. 4
2.3.1 Without signature.. 4
2.3.2 With medium security included signature .. 4
2.3.3 With high security included signature .. 4
2.3.4 With detached signature.. 4

2.4 High security encrypted messages .. 5
2.4.1 Without signature.. 5
2.4.2 With medium security included signature .. 5
2.4.3 With high security included signature .. 5
2.4.4 With detached signature.. 6

2.5 Allowed operations ... 6
2.6 Examples... 7

2.6.1 An unencrypted text message with a medium security included signature 7
3 Basic functions.. 9

3.1 Shake... 9
3.1.1 Shake pseudocode... 9
3.1.2 Inverting Shake ... 10
3.1.3 Shake scientific background ... 10

3.2 Public/private key operations (RSA) .. 11
3.2.1 Public key operations.. 11
3.2.2 Secret key operations .. 11

3.3 Symmetric packet encryption (AES) .. 11
3.3.1 Obtaining AES key and IV for detached signature encryption............................. 11

3.4 Key generation .. 12
4 Transport objects... 13

4.1 Unencrypted.. 13
4.2 Medium security transport .. 13

4.2.1 Medium security packet format .. 13
4.2.2 Medium security crypto envelope... 13

4.3 High security transport.. 14
4.3.1 High security packet format.. 14

4.3.1.1 High security packet #1 .. 14
4.3.1.2 High security packet #2 .. 14

4.3.2 High security crypto envelope .. 14
5 Data objects... 15

5.1 No Operation... 15
5.2 Text message... 15

5.2.1 Included signature information ... 15
5.2.2 Detached signature information.. 15

5.3 Key.. 16
5.3.1 Key fingerprint.. 16
5.3.2 Included key signature .. 16
5.3.3 Detached key signatures ... 16

5.4 Key revocation .. 17
5.5 Detached signature.. 17
5.6 Multipart container.. 17
5.7 Encapsulation packet .. 18

6 Index ... 19

	Introduction
	The SEMS protocol
	About SEMS operations
	Signatures

	Unencrypted
	Without signature
	With medium security included signature
	With high security included signature
	With detached signature

	Medium security encrypted messages
	Without signature
	With medium security included signature
	With high security included signature
	With detached signature

	High security encrypted messages
	Without signature
	With medium security included signature
	With high security included signature
	With detached signature

	Allowed operations
	Examples
	An unencrypted text message with a medium security included signature

	Basic functions
	Shake
	Shake pseudocode
	Inverting Shake
	Shake scientific background

	Public/private key operations (RSA)
	Public key operations
	Secret key operations

	Symmetric packet encryption (AES)
	Obtaining AES key and IV for detached signature encryption

	Key generation

	Transport objects
	Unencrypted
	Medium security transport
	Medium security packet format
	Medium security crypto envelope

	High security transport
	High security packet format
	High security packet #1
	High security packet #2

	High security crypto envelope

	Data objects
	No Operation
	Text message
	Included signature information
	Detached signature information

	Key
	Key fingerprint
	Included key signature
	Detached key signatures

	Key revocation
	Detached signature
	Multipart container
	Encapsulation packet

	Appendices
	Appendix A: Modified Baudot

	Index

